Definition
Sample Variance $s^2 = \frac{\sum(X_{i}-\bar{X})}{n-1}$
n: size of sample
df: n-1
Proof
1. $E(S^2)=\sigma^2$
$E(S^2)$ 가 $\sigma^2$의 점추정치가 될 수 있다.
proof)
$E(S^2)$
$=E(\frac{1}{n-1}\sum(X_{i}-bar{X})^2)$
$=\frac{1}{n-1}E(\sum(X_{i}-\mu+\mu-\bar{X})^2$
$=\frac{1}{n-1}E(\sum((X_{i}-\mu)^2+(\mu-\bar{X})^2+2(X_{i}-\mu)(\mu-\bar{X})))$
$=\frac{1}{n-1}E(\sum((X_{i}-\mu)^2)+n(\mu-\bar{X})-2n(\mu-\bar{X})^2)$
$=\frac{1}{n-1}E(\sum((X_{i}-\mu)^2))+\frac{1}{n-1}E(-n(\mu-\bar{X})^2)$
$=\frac{1}{n-1}E(\sum((X_{i}-\mu)^2))-\frac{n}{n-1}E((\mu-\bar{X})^2)$
$=\frac{1}{n-1}n\sigma^2-\frac{n}{n-1}\frac{\sigma^2}{n}$
$=\frac{n}{n-1}\sigma^2-\frac{\sigma^2}{n-1}$
$=(\frac{n-1}{n-1})\sigma^2$
$=\sigma^2$
lemma
1) $E(\sum(X_{i}-\mu)^2)=n\sigma^2$
$var(X)$
$=E(\frac{1}{n}\sum(X_{i}-\mu)^2)$
$=\frac{1}{n}E(\sum(X_{i}-\mu)^2)$
$=\sigma^2$
2) $E(\sum(\mu-\bar{x})^2)=E(n(\mu-\bar{X})^2)$
3) $E(\sum(2(X_{i}-\mu)(\mu-\bar{X}))$
$E(\sum(2(X_{i}-\mu)(\mu-\bar{X})))$
$=E(2(\mu-\bar{X})\sum((X_{i}-\mu)))$
$=E(2(\mu-\bar{X})(n\bar{X}-n\mu))$
$=E(2n(\mu-\bar{X})(\bar{X}-\mu))$
$=E(-2n(\mu-\bar{X})^2)$
4) $var(\bar{X})=E((\bar{X}-\mu)^2)=\frac{\sigma^2}{n}$
'DataScience > Statistics' 카테고리의 다른 글
특이도 민감도 재현율 정밀도 정확도 (0) | 2022.08.12 |
---|---|
[ESL2] Singular Matrix (0) | 2021.12.26 |
[ESL2] Quadratic Function (0) | 2021.12.26 |
Central Limit Theorem (0) | 2021.04.11 |
The mean and variance of bar{X} (0) | 2021.04.03 |